Compressible Aerodynamics Calculator
Solve isentropic flow, normal shock, oblique shock, Fanno flow, and Rayleigh flow relations quickly and easily. See sample implementations in Python, JavaScript, MATLAB, and C++. This calculator is based on Virginia Tech’s Compressible Aerodynamics Calculator.
Isentropic Flow Relations
Information about isentropic flow relations.
- $$ \mu = \frac{1}{\sin^{-1}(M)} $$ $$ \nu = \sqrt{\frac{\gamma + 1}{\gamma - 1}} \cdot \tan^{-1}\left( \sqrt{\frac{\gamma - 1}{\gamma + 1} (M^2 - 1) } \right) - \tan^{-1}\left( \sqrt{ (M^2 - 1) } \right) $$ $$ \frac{p}{p_0} = \left( 1 + \frac{\gamma - 1}{2} M^2 \right) ^ {-\frac{\gamma}{\gamma - 1}} $$ $$ \frac{\rho}{\rho_0} = \left( 1 + \frac{\gamma - 1}{2} M^2 \right) ^ {-\frac{1}{\gamma - 1}} $$ $$ \frac{T}{T_0} = \left( 1 + \frac{\gamma - 1}{2} M^2 \right) ^ {-1} $$ $$ \frac{p}{p^*} = \left( \frac{2 + (\gamma - 1) M^2}{\gamma + 1} \right) ^ {-\frac{\gamma}{\gamma - 1}} $$ $$ \frac{\rho}{\rho^*} = \left( \frac{2 + (\gamma - 1) M^2}{\gamma + 1} \right) ^ {-\frac{1}{\gamma - 1}} $$ $$ \frac{T}{T^*} = \frac{\gamma + 1}{2 + (\gamma - 1) M^2} $$ $$ \frac{A}{A^*} = \left( \frac{\gamma + 1}{2} \right) ^ {-\frac{\gamma + 1}{2(\gamma - 1)}} \cdot \left( \frac{1 + \frac{\gamma - 1}{2} M^2}{M} \right) ^ {\frac{\gamma + 1}{2(\gamma - 1)}} $$
import math M = 2.0 # Mach Number mach_angle = math.degrees(math.asin(1 / M)) print(f'The Mach angle at M = { M } is { mach_angle } degrees.')
var M = 2.0; // Mach Number mach_angle = Math.asin(1 / M) * 180 / Math.PI; console.log('The Mach angle at M = ' + M + ' is ' + mach_angle + ' degrees.');
M = 2.0; % Mach Number mach_angle = asind(1 / M); fprintf('The Mach angle at M = %f is %f degrees.', M, mach_angle)
#include <stdio.h> /* printf */ #include <math.h> /* asin */ #define PI 3.14159265 int main () { double M = 0.5; // Mach Number double mach_angle = asin(1 / M) * 180.0 / PI; printf ("The Mach angle at M = %f is %f degrees.\n", M, mach_angle); return 0; }